Χ Tests for the Choice of the Regularization Parameter in Nonlinear Inverse Problems∗
نویسنده
چکیده
We address discrete nonlinear inverse problems with weighted least squares and Tikhonov regularization. Regularization is a way to add more information to the problem when it is ill-posed or ill-conditioned. However, it is still an open question as to how to weight this information. The discrepancy principle considers the residual norm to determine the regularization weight or parameter, while the χ2 method [J. Mead, J. Inverse Ill-Posed Probl., 16 (2008), pp. 175– 194; J. Mead and R. A. Renaut, Inverse Problems, 25 (2009), 025002; J. Mead, Appl. Math. Comput., 219 (2013), pp. 5210–5223; R. A. Renaut, I. Hnetynkova, and J. L. Mead, Comput. Statist. Data Anal., 54 (2010), pp. 3430–3445] uses the regularized residual. Using the regularized residual has the benefit of giving a clear χ2 test with a fixed noise level when the number of parameters is equal to or greater than the number of data. Previous work with the χ2 method has been for linear problems, and here we extend it to nonlinear problems. In particular, we determine the appropriate χ2 tests for Gauss–Newton and Levenberg–Marquardt algorithms, and these tests are used to find a regularization parameter or weights on initial parameter estimate errors. This algorithm is applied to a two-dimensional cross-well tomography problem and a one-dimensional electromagnetic problem from [R. C. Aster, B. Borchers, and C. Thurber, Parameter Estimation and Inverse Problems, Academic Press, New York, 2005].
منابع مشابه
A Statistical Method for Regularizing Nonlinear Inverse Problems
Inverse problems are typically ill-posed or ill-conditioned and require regularization. Tikhonov regularization is a popular approach and it requires an additional parameter called the regularization parameter that has to be estimated. The χ method introduced by Mead in [8] uses the χ distribution of the Tikhonov functional for linear inverse problems to estimate the regularization parameter. H...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملChi2 Tests for the Choice of the Regularization Parameter in Nonlinear Inverse Problems
We address discrete nonlinear inverse problems with weighted least squares and Tikhonov regularization. Regularization is a way to add more information to the problem when it is ill-posed or ill-conditioned. However, it is still an open question as to how to weight this information. The discrepancy principle considers the residual norm to determine the regularization weight or parameter, while ...
متن کاملSolving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملA numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization
In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013